Abstract
Digital media (i.e., image, audio) has played an influential role in today information system. The increasing of popularity in digital media has brought forth many technological advancements. The advancements, however, also gives birth to a number of forgeries and attacks against this type of information. With the availability of easy-to-use media manipulating tools available online, the authenticity of today digital media cannot be guaranteed. In this paper, a new general framework for enhancing today media splicing detection has been proposed. By combining results from two traditional approaches, the enhanced detection results show improvement in term of clarity in which anomalies are more explicitly shown, providing easier and faster way for a forensic practitioner to investigate and verify the authenticity of the target digital media. Regarding the experiment, the developed framework was tested against a number of realistic tampered (spliced) media. Moreover, the enhanced detection results are compared with traditional approaches to ensure the efficiency of our proposed method in the realistic situation.
References
A. Muller, R. (2004). The Voice of Osama bin Laden. Retrieved 2016-10-22, from https://www.technologyreview.com/s/402415/the-voice-of-osama-bin-laden
Al-Qershi, O. M., & Khoo, B. E. (2013). Passive detection of copy-move forgery in digital images: State-of-the-art. Forensic Science International, 231(1-3), 284–295. Retrieved from http://dx.doi.org/10.1016/j.forsciint.2013.05.027 doi:10.1016/j.forsciint.2013.05.027
Andale. (2012). Pearson Correlation: Definition and Easy Steps for Use. Retrieved 2016-02-17, from http://www.statisticshowto.com/what-is-the-pearson-correlation-coefficient/
Bergland, G. (1969). A guided tour of the fast Fourier transform. Spectrum, IEEE, 6(7), 41–52. Retrieved from http://ieeexplore.ieee.org/xpls/abs{\}all.jsp?arnumber=5213896 doi:10.1109/MSPEC.1969.5213896
Birajdar, G. K., & Mankar, V. H. (2013, oct). Digital image forgery detection using passive techniques: A survey. Digital Investigation, 10(3), 226–245. Retrieved from http://www.sciencedirect.com/science/article/pii/S1742287613000364 doi:10.1016/j.diin.2013.04.007
Bourke, P. (1996). Cross Correlation. Retrieved from http://paulbourke.net/miscellaneous/correlate/
CASIA Tampered Image Detection Evaluation Database. (2009). Retrieved from http://forensics.idealtest.org/casiav2/
Chakraborty, A., Paranjape, B., Kakarla, S., & Ganguly, N. (2016). Stop Clickbait: Detecting and preventing clickbaits in online news media. In Proceedings of the 2016 ieee/acm international conference on advances in social networks analysis and mining, asonam 2016 (pp. 9–16). doi:10.1109/ASONAM.2016.7752207
Farid, H. (2009). Exposing digital forgeries from JPEG ghosts. IEEE Transactions on Information Forensics and Security, 4(1), 154–160. doi: 10.1109/TIFS.2008.2012215
Hwang, M. G., & Har, D. H. (2013). A Novel Forged Image Detection Method Using the Characteristics of Interpolation. Journal of Forensic Sciences, 58(1), 151–162. doi: 10.1111/j.1556-4029.2012.02265.x
Kannan, R., & Hopcroft, J. (2012). Computer Science Theory for the Information Age.
Lappin, Y. (2006). Reuters admits altering Beirut photo. Retrieved 2016-09-06, from http://www.ynetnews.com/articles/0,7340,L-3286966,00.html
Mahdian, B., & Saic, S. (2009, sep). Using noise inconsistencies for blind image forensics. Image and Vision Computing, 27(10), 1497–1503. Retrieved from http://www.sciencedirect.com/science/article/pii/S0262885609000146 doi: 10 .1016/j.imavis.2009.02.001
Nizza, M., & J. Lyons, P. (2008). In an Iranian Image , a Missile Too Many. Retrieved 2017-07-10, from http://thelede.blogs.nytimes.com/2008/07/10/in-an-iranian-image-a-missile-too-many
Pan, X., Zhang, X., & Lyu, S. (2011). Exposing image forgery with blind noise estimation. In Proceedings of the thirteenth acm multimedia workshop on multimedia and security - mm&sec ’11 (p. 15). Retrieved from http://dl.acm.org/citation.cfm?doid=2037252.2037256 doi: 10.1145/2037252.2037256
Pan, X., Zhang, X., & Lyu, S. (2012). Detecting Splicing in Digital Audios using Local Noise Level Estimation. In Proceedings of the 2012 ieee international conference on acoustics, speech and signal (icassp) (pp. 1841–1844). doi:10.1109/ICASSP.2012.6288260
Roberts, S. (2003). Lecture 7 - The Discrete Fourier Transform. Retrieved from http://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf doi:10.1142/4610
Shi, Q., & Ma, X. (2011). Detection of audio interpolation based on singular value decomposition. 2011 3rd International Conference on Awareness Science and Technology (iCAST), 287–290.
Sundaram.A, M., & Nandini, C. (2015). Image Retouching and it’s Detection - A Survey. International Journal of Research in Engineering and Technology, 04(14), 30–34.
Takamatsu, J., Matsushita, Y., Ogasawara, T., & Ikeuchi, K. (2010). Estimating demosaicing algorithms using image noise variance. In Proceedings of the ieee computer society conference on computer vision and pattern recognition (pp. 279–286). doi:10.1109/CVPR.2010.5540200
Warif, N. B. A., Wahab, A. W. A., Idris, M. Y. I., Ramli, R., Salleh, R., Shamshirband, S., & Choo, K. K. R. (2016). Copy-move forgery detection: Survey, challenges and future directions. Journal of Network and Computer Applications, 75, 259–278. Retrieved from http://dx.doi.org/10.1016/j.jnca.2016.09.008 doi:10.1016/j.jnca.2016.09.008
Wolfgang, R. B., & Delp, E. J. (1997). a Watermarking Technique for Digital Imagery : Further Studies. In Proceedings of the international conference on imaging, systems, and technology (pp. 279–287). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8994
Yan, Q., Yang, R., & Huang, J. (2015). Copy-move detection of audio recording with pitch similarity. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2015-August(61202497), 1782–1786. doi:10.1109/ICASSP.2015.7178277
Recommended Citation
TEERAKANOK, Songpon and UEHARA, Tetsutaro
(2018)
"Enhancement of Media Splicing Detection: A General Framework,"
Journal of Digital Forensics, Security and Law: Vol. 13
, Article 8.
DOI: https://doi.org/10.15394/jdfsl.2018.1481
Available at:
https://commons.erau.edu/jdfsl/vol13/iss2/8