Start Date
4-1988 8:00 AM
Description
The primary thrust of robotics at KSC is for the"servicing of Space Shuttle remote umbilical docking functions. In order for this to occur, robots performing servicing operations must be capable of tracking a swaying Orbiter in Six Degrees of Freedom (6-DOF) . Currently, in NASA KSC's Robotic Applications Development Laboratory (RADL) , an ASEA IRB-90 industrial robot is being equipped with a real-time computer vision (hardware and software) system to allow it to track a simulated Orbiter interface (target) in 6-DOF. The real-time computer vision system effectively becomes the eyes for the lab robot, guiding it through a closed loop visual feedback system to move with the simulated Orbiter interface. This paper will address an understanding of this vision guidance system and how it will be applied to remote umbilical servicing at KSC. In addition, other current and future applications will be addressed.
Understanding Of And Applications For Robot Vision Guidance At KSC
The primary thrust of robotics at KSC is for the"servicing of Space Shuttle remote umbilical docking functions. In order for this to occur, robots performing servicing operations must be capable of tracking a swaying Orbiter in Six Degrees of Freedom (6-DOF) . Currently, in NASA KSC's Robotic Applications Development Laboratory (RADL) , an ASEA IRB-90 industrial robot is being equipped with a real-time computer vision (hardware and software) system to allow it to track a simulated Orbiter interface (target) in 6-DOF. The real-time computer vision system effectively becomes the eyes for the lab robot, guiding it through a closed loop visual feedback system to move with the simulated Orbiter interface. This paper will address an understanding of this vision guidance system and how it will be applied to remote umbilical servicing at KSC. In addition, other current and future applications will be addressed.
Comments
No other information or file available for this session.