Location

Radisson Resort at the Port, Convention Center, Salon I

Start Date

30-4-2003 1:30 PM

End Date

30-4-2003 5:00 PM

Description

Plants will be a critical component of future Bioregenerative Life Support Systems that will be implemented on long duration space missions. We describe here a novel microgravity-rated plant growth apparatus that is targeted for use on the International Space Station (ISS) in the 2004-2005 timeframe. The system contains six modular units capable of utilizing either porous tube and/or substrate-based nutrient delivery approaches. Heat pulse moisture sensors are used to both monitor and control root zone wetness levels. In addition, a fixed-feed water delivery algorithm is available which meters out appropriate levels of water based upon plant life cycle stage. Fifty miniature color cameras will image the plant specimens throughout the experiment, permitting real-time assessments of plant performance over time. Alternative experimental strategies suitable for implementation on the ISS are discussed.

Share

COinS
 
Apr 30th, 1:30 PM Apr 30th, 5:00 PM

Paper Session I-A - Development of Technology and Experimental Designs for Plant Growth Studies in Space

Radisson Resort at the Port, Convention Center, Salon I

Plants will be a critical component of future Bioregenerative Life Support Systems that will be implemented on long duration space missions. We describe here a novel microgravity-rated plant growth apparatus that is targeted for use on the International Space Station (ISS) in the 2004-2005 timeframe. The system contains six modular units capable of utilizing either porous tube and/or substrate-based nutrient delivery approaches. Heat pulse moisture sensors are used to both monitor and control root zone wetness levels. In addition, a fixed-feed water delivery algorithm is available which meters out appropriate levels of water based upon plant life cycle stage. Fifty miniature color cameras will image the plant specimens throughout the experiment, permitting real-time assessments of plant performance over time. Alternative experimental strategies suitable for implementation on the ISS are discussed.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.