Is this project an undergraduate, graduate, or faculty project?

Undergraduate

Loading...

Media is loading
 

group

What campus are you from?

Daytona Beach

Authors' Class Standing

Atharv S. Dangore: Junior Alexis R. Smith: Senior Marwa M. El-Sayed: Faculty Foram R. Madiyar: Faculty

Lead Presenter's Name

Atharv S. Dangore, Alexis R. Smith

Faculty Mentor Name

Marwa M. El-Sayed, Foram R. Madiyar

Abstract

For the purposes of this research, microplastics (MPs) can be defined as small fragments of plastic or synthetic polymer material that are less than 5mm in size. The goal of this study is to investigate MPs in the atmosphere. Previous research has primarily focused on MPs in marine and coastal environments; however, we are directing our attention to the atmospheric presence of MPs. This is due to the uncertainties associated with the impacts of MPs on human health upon inhalation. By the means of active and passive sampling, we aim to determine the atmospheric transport of MPs operating from the Embry-Riddle Aeronautical University at the Daytona Beach Campus. Active sampling entails using the Tisch High Volume Air Sampler, which will be collected daily. On the other hand, passive sampling utilizes a setup devised to hold the filter to collect MPs, this will be collected weekly. From this point, the MPs will be isolated and analyzed under a ZEISS Axioscope 7 compound microscope to determine the size of the microplastic particles. Fourier transform infrared (FTIR) spectroscopy will be utilized to investigate chemical properties of MPs. Utilizing these methods, we will obtain a thorough understanding of the composition and origin of these atmospheric particles. To further assess the effect of weather conditions on the transportation of MPs in the atmosphere, this work will be conducted seasonally. This study has implications for the effects of MPs on human health via inhalation, as well as their effects on water bodies and soil upon deposition.

Did this research project receive funding support from the Office of Undergraduate Research.

No

Share

COinS
 

Characterization of Microplastics in the Atmosphere

For the purposes of this research, microplastics (MPs) can be defined as small fragments of plastic or synthetic polymer material that are less than 5mm in size. The goal of this study is to investigate MPs in the atmosphere. Previous research has primarily focused on MPs in marine and coastal environments; however, we are directing our attention to the atmospheric presence of MPs. This is due to the uncertainties associated with the impacts of MPs on human health upon inhalation. By the means of active and passive sampling, we aim to determine the atmospheric transport of MPs operating from the Embry-Riddle Aeronautical University at the Daytona Beach Campus. Active sampling entails using the Tisch High Volume Air Sampler, which will be collected daily. On the other hand, passive sampling utilizes a setup devised to hold the filter to collect MPs, this will be collected weekly. From this point, the MPs will be isolated and analyzed under a ZEISS Axioscope 7 compound microscope to determine the size of the microplastic particles. Fourier transform infrared (FTIR) spectroscopy will be utilized to investigate chemical properties of MPs. Utilizing these methods, we will obtain a thorough understanding of the composition and origin of these atmospheric particles. To further assess the effect of weather conditions on the transportation of MPs in the atmosphere, this work will be conducted seasonally. This study has implications for the effects of MPs on human health via inhalation, as well as their effects on water bodies and soil upon deposition.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.