Author Information

Naresh AhujaFollow

Is this project an undergraduate, graduate, or faculty project?

Graduate

Project Type

individual

Campus

Daytona Beach

Authors' Class Standing

Graduate Student

Lead Presenter's Name

Naresh Ahuja

Faculty Mentor Name

Dr. Mandar Kulkarni

Loading...

Media is loading
 

Abstract

Jet Aircraft Engines turbine blades, Rocket engines, Missiles, re-entry vehicles strive to improve performance. Ceramic Matrix composites (CMC’s) replace Nickel Super-alloys because of the numerous novel advantages as weight reduction, operating at higher temperatures, producing higher thrust by reducing the cooling air diverted from thrust. The traditional material science engineering takes a long time to generate these advanced ceramic matrix composite with the tailored required performance. With the rapid development of machine learning, it is possible to use neural network to build models to predict the performance of CMC’s. A reduced order, data driven, predictive model to quantify the creep strength in continuous CMC using the machine learning tools is proposed and explored. A framework is developed to quantify the importance of microstructural parameters on strength. The stochastic microstructure attributes considered includes the fiber diameter, fiber spacing, interface material, interface thickness and volume fraction. The elastic responses of the instantiated microstructures are characterized using finite element analysis (FEA). Results from the FEA will be used as the ground truth to calibrate and validate a data-driven machine learning (ML) model. The quantified stochastic microstructure attributes will be correlated with the statistics of the simulated response. The predictive capabilities of the model for a new microstructure will be demonstrated.

Did this research project receive funding support (Spark, SURF, Research Abroad, Student Internal Grants, Collaborative, Climbing, or Ignite Grants) from the Office of Undergraduate Research?

No

Share

COinS
 

Predicting the effects of microstructure on creep strength in Ceramic Matrix Composite using Data driven Modelling

Jet Aircraft Engines turbine blades, Rocket engines, Missiles, re-entry vehicles strive to improve performance. Ceramic Matrix composites (CMC’s) replace Nickel Super-alloys because of the numerous novel advantages as weight reduction, operating at higher temperatures, producing higher thrust by reducing the cooling air diverted from thrust. The traditional material science engineering takes a long time to generate these advanced ceramic matrix composite with the tailored required performance. With the rapid development of machine learning, it is possible to use neural network to build models to predict the performance of CMC’s. A reduced order, data driven, predictive model to quantify the creep strength in continuous CMC using the machine learning tools is proposed and explored. A framework is developed to quantify the importance of microstructural parameters on strength. The stochastic microstructure attributes considered includes the fiber diameter, fiber spacing, interface material, interface thickness and volume fraction. The elastic responses of the instantiated microstructures are characterized using finite element analysis (FEA). Results from the FEA will be used as the ground truth to calibrate and validate a data-driven machine learning (ML) model. The quantified stochastic microstructure attributes will be correlated with the statistics of the simulated response. The predictive capabilities of the model for a new microstructure will be demonstrated.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.