Gyrochronology: TESS Light Curve Analysis

Myles Curtis
Dori Stein
Heather Hancock
Terry Oswalt
Mariel Lares

Abstract

Gyrochronology is the observed correlation between the age of a cool main-sequence star like the Sun and its rotational period. Various methods can be used to determine stellar rotation periods, however NASA’s Kepler mission and NASA’s Transiting Exoplanet Survey Satellite (TESS) mission provide complementary data for this type of project. Kepler focused on a very small observational field for almost four continuous years, whereas TESS continues to survey the entire night sky for intervals of about one month at a time. Due to this difference in cadence, it is important to compare the resulting rotation periods obtained from these surveys. We have constructed TESS light curves to compare to existing Kepler light curves of the same target stars observed at different epochs. Identifying the conditions under which TESS rotation periods may differ from those derived from the Kepler mission can help identify the random and systematic biases of each data set. This poster presents some preliminary results of this comparison.

Support from NSF grants AST-1910396, AST-2108975 and NASA grants 80NSSC22K0622, 80NSSC21K0245, and NNX16AB76G is gratefully acknowledged.

*Florida Gulf Coast University

 

Gyrochronology: TESS Light Curve Analysis

Gyrochronology is the observed correlation between the age of a cool main-sequence star like the Sun and its rotational period. Various methods can be used to determine stellar rotation periods, however NASA’s Kepler mission and NASA’s Transiting Exoplanet Survey Satellite (TESS) mission provide complementary data for this type of project. Kepler focused on a very small observational field for almost four continuous years, whereas TESS continues to survey the entire night sky for intervals of about one month at a time. Due to this difference in cadence, it is important to compare the resulting rotation periods obtained from these surveys. We have constructed TESS light curves to compare to existing Kepler light curves of the same target stars observed at different epochs. Identifying the conditions under which TESS rotation periods may differ from those derived from the Kepler mission can help identify the random and systematic biases of each data set. This poster presents some preliminary results of this comparison.

Support from NSF grants AST-1910396, AST-2108975 and NASA grants 80NSSC22K0622, 80NSSC21K0245, and NNX16AB76G is gratefully acknowledged.

*Florida Gulf Coast University