Stimulation of soil native microflora to stabilize soils after wildfires

Christopher Legon, Embry-Riddle Aeronautical University

Abstract

Stimulation of soil native microflora to stabilize soils after wildfires

In nature ureolytic bacteria will use Urea as a carbon source. In the presence of Calcium, the ureolytic reaction will form Calcium Carbonate. This pathway is of interest because Calcium Carbonate will function as a bio-cementing molecule, stabilizing the soil in a process known as Microbial-Induced Calcite Precipitation (MICP). This study hypothesizes that amendment of soil with Urea will enrich the natural population of ureolytic bacteria which upon the addition of Calcium Chloride will result in the stabilization of the soil. For this purpose, burned and unburned soil will be treated with microbiological media to promote the growth of native ureolytic populations. We will then measure the enriched soil urease activity using a colorimetric assay, calcite precipitation with a gravimetric method after the acid dissolution of the calcite, and the compaction and stabilization of soil using ASTM standard methods. We will also isolate and identify ureolytic bacteria to be applied in future MICP experiments. This is a collaborative effort between students and faculty of the Aerospace Physiology and Civil Engineering programs.

 

Stimulation of soil native microflora to stabilize soils after wildfires

Stimulation of soil native microflora to stabilize soils after wildfires

In nature ureolytic bacteria will use Urea as a carbon source. In the presence of Calcium, the ureolytic reaction will form Calcium Carbonate. This pathway is of interest because Calcium Carbonate will function as a bio-cementing molecule, stabilizing the soil in a process known as Microbial-Induced Calcite Precipitation (MICP). This study hypothesizes that amendment of soil with Urea will enrich the natural population of ureolytic bacteria which upon the addition of Calcium Chloride will result in the stabilization of the soil. For this purpose, burned and unburned soil will be treated with microbiological media to promote the growth of native ureolytic populations. We will then measure the enriched soil urease activity using a colorimetric assay, calcite precipitation with a gravimetric method after the acid dissolution of the calcite, and the compaction and stabilization of soil using ASTM standard methods. We will also isolate and identify ureolytic bacteria to be applied in future MICP experiments. This is a collaborative effort between students and faculty of the Aerospace Physiology and Civil Engineering programs.