Is this project an undergraduate, graduate, or faculty project?

Undergraduate

Project Type

group

Campus

Daytona Beach

Authors' Class Standing

Noa Teed, Senior Michael Leitelt, Senior

Lead Presenter's Name

Noa Teed

Lead Presenter's College

DB College of Engineering

Faculty Mentor Name

Mihhail Berezovski

Abstract

Accurately predicting the demand for aviation is a complex problem that is essential for the success of the private aviation industries. Factors such as seasonality and location affect the demand for private flights, but high-demand events and holidays introduce additional and often unexpected influences on these services. Flexjet Inc., a renowned global provider of private aviation services, operates extensively in European destinations, where travel is heavily characterized by high-demand events and holidays. This research utilizes detailed characterization data provided by Flexjet Inc. containing over 1.1 million private flights between 2,016 locations from 2018 and 2019. Leveraging advanced data analysis techniques, this project constructs a spatio-temporal forecasting model to accurately predict the demand for private jet travel during high-demand events and holidays in European destinations. This research delivers valuable insights to providers of private aviation, enabling them to proactively respond to market fluctuations and optimize their operational strategies.

Did this research project receive funding support (Spark, SURF, Research Abroad, Student Internal Grants, Collaborative, Climbing, or Ignite Grants) from the Office of Undergraduate Research?

Yes, Spark Grant

Share

COinS
 

Event-Driven Demand Modeling of European Private Aviation Travel

Accurately predicting the demand for aviation is a complex problem that is essential for the success of the private aviation industries. Factors such as seasonality and location affect the demand for private flights, but high-demand events and holidays introduce additional and often unexpected influences on these services. Flexjet Inc., a renowned global provider of private aviation services, operates extensively in European destinations, where travel is heavily characterized by high-demand events and holidays. This research utilizes detailed characterization data provided by Flexjet Inc. containing over 1.1 million private flights between 2,016 locations from 2018 and 2019. Leveraging advanced data analysis techniques, this project constructs a spatio-temporal forecasting model to accurately predict the demand for private jet travel during high-demand events and holidays in European destinations. This research delivers valuable insights to providers of private aviation, enabling them to proactively respond to market fluctuations and optimize their operational strategies.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.