Date of Award

Summer 2012

Access Type

Thesis - Open Access

Degree Name

Master of Science in Human Factors & Systems

Department

Human Factors and Systems

Committee Chair

Kelly J. Neville

First Committee Member

Elizabeth L. Blickensderfer

Second Committee Member

Jennifer Fowlkes

Abstract

Many current complex business and industry jobs consist primarily of cognitive work; however, current approaches to training may be inadequate for this type of work (Hoffman, Feltovich, Fiore, Klein, & Ziebell, 2009). To try and improve training and education for cognitive work, Klein and Baxter (2006) have proposed cognitive transformation theory (CTT), a learning theory that claims that sensemaking activities are essential for acquiring expertise that is adaptive and thus well suited for cognitive work domains. In the present research, cognitive task analysis methods were used to identify and assess sensemaking support in the instruction and learning of complex concepts by two experienced air traffic control professors and seven of their students. The goal of this research was to compare instructional strategies used in an academic setting with the predictions of CTT to gain insight into strategies for the application of CTT. Cognitive task analysis methods employed included course observation, artifact examination, and knowledge elicitation sessions with two professors and seven of their students. Knowledge elicitation transcriptions were coded using categories derived from CTT and the data/frame theory of sensemaking (e.g. Klein, Moon, & Hoffman, 2006; Sieck, Klein, Peluso, Smith, & Harris-Thompson, 2007) to assess theoretical and applied implications for learning and instruction in a complex domain. Findings are represented by synthesizing theory driven predictions with grounded training strategies and technologies. In addition, recommendations are advanced for applying CTT to training and educational systems in order to provide sensemaking support during early phases of learning from which expertise may be developed.

Share

COinS