Date of Award

Fall 11-2014

Access Type

Thesis - Open Access

Degree Name

Master of Science in Aerospace Engineering

Department

Aerospace Engineering

Committee Chair

John A. Ekaterinaris

First Committee Member

R.R. Mankbadi

Second Committee Member

Vladimir V. Golubev

Abstract

A projection scheme for the numerical solution of the incompressible Navier-Strokes equation is presented. Finite element discontinuous Galerkin (dG) discretization for the velocity in the momentum equations is employed. The incompressibility constraint is enforced by numerically solving the Poisson equation for pressure using a continuous Galerkin (cG) discretization. The main advantage of the method is that is does not require the velocity and pressure approximation spaces to satisfy the usual inf-sup condition, thus equal order finite element approximations for both velocity and pressure can be used. Furthermore, by using cG discretization for the Poisson equation, no auxiliary equations are needed as it is required for dG approximations of second order derivatives. In order to enable large time steps for time marching to steady-state and time evolving problems, implicit scheme is used in connection with high order implicit RK methods. Numerical tests demonstrate that the overall scheme is accurate and computationally efficient.

Share

COinS