Date of Award
Fall 12-2016
Access Type
Thesis - Open Access
Degree Name
Master of Science in Aerospace Engineering
Department
Aerospace Engineering
Committee Chair
Sathya Gangadharan
First Committee Member
Sirish Namilae
Second Committee Member
L.L. Narayanaswami
Abstract
The concept of developing a new technology for on-orbit storage and refueling system has been a great interest among scientists for many decades. This study is about Centaur-based on-orbit propellant storage and transfer. This system takes the advantage of rotational settling to a simple fluid management (FM) system. Specifically, enabling settled fluid transfer and settled pressure control between two tanks. This thesis work focuses on configuration and validation of static and dynamic stability, mass gauging and CFD analysis of the rotational propellant transfer method in space. The application of this technology in Low Earth Orbit (LEO) and Geo-Synchronous Orbit (GEO) would enable further extending the mission capabilities of modern day Commercial Launch Vehicles (CLV’S). Bulk Storage and handling of propellant liquids in space involves considerable technical challenge due to high vacuum and potential zero gravity environment. In order to raise the technology readiness level of this system, experimental study was conducted on (a) system dynamics, (b) mass gauging, (c) CFD analysis. The stability dynamics study showed the system to be stable about the minor axis with high rotational velocity. The mass gauging system was validated using experimental modal analysis. CFD analysis was used to analysis the fluid behavior during the transfer. These results provide a critical insight into the behavior and physical tendencies of the on-orbit refueling system.
Scholarly Commons Citation
Sundararaju, Priyadarshan, "Configuration Validation of a Novel In-Space Propellant Storage and Transfer System" (2016). Doctoral Dissertations and Master's Theses. 314.
https://commons.erau.edu/edt/314