Date of Award
Fall 12-2016
Access Type
Thesis - Open Access
Degree Name
Master of Science in Mechanical Engineering
Department
Mechanical Engineering
Committee Chair
Patrick N. Currier
First Committee Member
Marc Compere
Second Committee Member
Eric J. Coyle
Abstract
Hybrid vehicles are becoming the future of automobiles leading into the all-electric generation of vehicles. Electric vehicles come with a great increase in torque at lower RPM resulting in the issue of transferring this torque to the ground effectively. In this thesis, a method is presented for limiting wheel slip and targeting the ideal slip ratio for dry asphalt and low friction surfaces at every given time step. A launch control system is developed to further reduce wheel slip on initial acceleration from standstill furthering acceleration rates to sixty miles per hour. A MATLAB Simulink model was built of the powertrain as well as a six degree of freedom vehicle model that has been validated with real testing data from the car. This model was utilized to provide a reliable platform for optimizing control strategies without having to have access to the physical vehicle, thus reducing physical testing. A nine percent increase has been achieved by utilizing traction control and launch control for initial vehicle movement to sixty miles per hour.
Scholarly Commons Citation
Szechy, Adam Michael, "Traction and Launch Control for a Rear-Wheel-Drive Parallel-Series Plug-In Hybrid Electric Vehicle" (2016). Doctoral Dissertations and Master's Theses. 315.
https://commons.erau.edu/edt/315