Date of Award

Fall 2022

Access Type

Thesis - Open Access

Degree Name

Master of Science in Aerospace Engineering

Department

Aerospace Engineering

Committee Chair

Riccardo Bevilacqua

First Committee Member

Richard Prazenica

Second Committee Member

Troy Henderson

Third Committee Member

Hever Moncayo

College Dean

James W. Gregory

Abstract

Accurate characterization of fragment fly-out properties from high-speed warhead detonations is essential for estimation of collateral damage and lethality for a given weapon. Real warhead dynamic detonation tests are rare, costly, and often unrealizable with current technology, leaving fragmentation experiments limited to static arena tests and numerical simulations. Stereoscopic imaging techniques can now provide static arena tests with time-dependent tracks of individual fragments, each with characteristics such as fragment IDs and their respective position vector. Simulation methods can account for the dynamic case but can exclude relevant dynamics experienced in real-life warhead detonations. This research leverages machine learning methodologies to predict fragmentation characteristics using data from this imaging technique and simulation data combined. Gaussian mixture models (GMMs), fit via expectation maximization (EM), are used to model fragment track intersections on a defined surface of intersection. After modeling the fragment distributions, k-nearest neighbor (K-NN) regressors are used to predict the desired fragmentation characteristics. Using Monte Carlo simulations, the K-NN regression is shown to predict the distributions for the total number of fragments intersecting a given surface and the total fragment velocity and mass associated with that surface. An ability to predict fragment fly-out characteristics accurately and quickly would provide information which can then be used to evaluate the collateral damage and lethality of a given weapon.

Share

COinS