Date of Award
Fall 11-2013
Access Type
Thesis - Open Access
Degree Name
Master of Science in Mechanical Engineering
Department
Mechanical Engineering
Committee Chair
Hever Moncayo
First Committee Member
Richard Prazenica
Second Committee Member
Yan Tang
Abstract
In practical applications, an Unmanned Aerial System's (UAS) baseline performance is dictated by how well it can follow a given trajectory with limited stress on the actuators. However, these can be insufficient performance metrics when the UAS is allowed to adapt to an unpredicted external influence such as turbulence or actuation failure, while maintaining a satisfactory baseline performance.
In this thesis, different control laws based on the formation flight geometry problem, nonlinear dynamic inversion and an artificial immune system adaptive mechanism , are implemented in hardware-in-the-loop as a precursor for in-flight testing. These controllers are compared based on three performance metrics: trajectory following, control activity and computer task execution time. The controllers chosen for comparison are: Basic Proportional-Integral-Derivative (PID), Outer loop Non-Linear Dynamic Inversion (NLDI), Extended NLDI, and the previous three controllers augmented with an AIS for a total of six controllers. The Extended NLDI augmented with the AIS outperformed all of the other algorithms under failure conditions on a global scale.
Scholarly Commons Citation
Lyons, Brendon, "Performance Analysis Of Non-Linear Adaptive Control Laws Using Hardware in the Loop of an Unmanned Aerial System" (2013). Doctoral Dissertations and Master's Theses. 98.
https://commons.erau.edu/edt/98