Novel Space Science Test via Adaptive Control and Integral Concurrent Learning Leveraging On-Orbit CubeSat Structural Identification


The objective of this work is to create the basic science underpinning the structural testing and evaluation framework and control for deployable large spacecraft. Large space structures and those with high dimensional ratio between deployed and stowed configurations are extremely difficult to test on the ground. The AFRL’s Space Vehicle Directorate recently opened the new Deployable Structures Laboratory, or DeSeL, as evidence of a renewed interest towards these systems. DeSeL represents the state-of-the-art technology for on-the-ground experimentation of deployable systems. In particular, an active Gravity Off-Load Follower (GOLF) cart system is being currently developed, intended to have three degrees of freedom (attitude motion) which could foreseeably provide the capability for large low-frequency motions. The real capabilities of the GOLF system are yet to be determined, and this research effort will develop in parallel, assist, support and inform the development of this new facility at AFRL. New testing and evaluation science to identify these systems’ behavior and control them, that are robust to large uncertainties in the structural dynamics are then needed, and the first time they deploy on orbit is the ultimate test. We propose to obtain the objective by combining novel control and learning theory with ad-hoc experimental activities. The culmination of this effort will be a flight demonstration, where a CubeSat previously designed by the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory will be modified in its design and perform autonomous on-orbit structural identification, control, and testing. The flight demonstration will be based on measuring the natural frequencies, damping ratios and vibration mode shapes via excitation of the spacecraft, using reaction wheels on the main hub and potentially distributed small thrusters on the flexible bodies, emulating the configuration of the AFRL’s Space Solar Power Incremental Demonstrations and Research Project (SSPIDR).

Scroll down for content