Submitting Campus

Daytona Beach


Physical Sciences

Document Type


Publication/Presentation Date



A method is developed for estimating F region ion composition from incoherent scatter radar (ISR) measurements during times of frictional ion heating. The technique addresses ion temperature‐mass ambiguities in the IS spectra by self‐consistently modeling ion temperature profiles, including the effects of ion temperature anisotropies and altitude‐independent neutral winds. The modeled temperature profiles are used in a minimization procedure to estimate ion composition consistent with the recorded IS spectra. The proposed method is applicable to short‐integration (min) data sets from either single‐beam or multiple‐beam experiments. Application of the technique to Sondrestrom ISR measurements shows increases in F region molecular ions in response to frictional heating, a result consistent with previous theoretical and observational work. Estimates of ion composition are shown to be relatively insensitive to moderate variations in the neutral atmospheric model, which serves as input to the method. The technique developed in this work is uniquely qualified for studying highly variable ion composition near auroral arcs and associated processes such as molecular ion upflows. It also addresses a systematic source of error in standard ISR analysis methods when they are applied in such situations.

Publication Title

Journal of Geophysical Research: Space Physics



American Geophysical Union

Grant or Award Name

NSF grant AGS‐ 1000302 and ERAU internal grant 13267

Additional Information

Zettergren, M., J. Semeter, C. Heinselman, and M. Diaz (2011), Incoherent scatter radar estimation of F region ionospheric composition during frictional heating events, J. Geophys. Res.,116, A01318.

Required Publisher’s Statement

An edited version of this paper was published by AGU. Copyright (2011) American Geophysical Union