Submitting Campus

Daytona Beach

Department

Physical Sciences

Document Type

Article

Publication/Presentation Date

4-18-2019

Abstract/Description

The nonlinear propagation of low-frequency acoustic waves through the turbulent fluctuations induced by breaking mountain gravity waves is investigated via 2-D numerical simulations of the Navier-Stokes equations, to understand the effects of atmospheric dynamics on ground-based infrasound measurements. Emphasis is placed on acoustic signals of frequency around 0.1 Hz, traveling through tens-of-kilometers-scale gravity waves and subkilometer-scale turbulence. The sensitivity of the infrasonic phases to small-scale fluctuations is found to depend on the altitudes through which they are refracted toward the Earth. For the considered cases, the dynamics in the stratosphere impact the refracting acoustic waves to a greater extent than those in the thermosphere. This work clearly demonstrates the need for accurate descriptions of the effects of atmospheric dynamics on acoustic propagation, such as here captured by the full set of fluid dynamic equations, as well as of the subsequent effects on measured signals.

Publication Title

Geophysical Research Letters

DOI

https://doi.org/10.1029/2019GL082456

Publisher

American Geophysical Union

Grant or Award Name

Defense Threat Reduction Agency award HDTRA1-16-1-0046

Share

COinS