Submitting Campus

Daytona Beach

Department

Department of Mathematics

Document Type

Article

Publication/Presentation Date

2014

Abstract/Description

Laser ablation in an ambient environment is becoming increasingly important in science and technology. It is used in applications ranging from chemical analysis via mass spectroscopy, to pulsed laser deposition and nanoparticle manufacturing. We describe numerical schemes for a multiphase hydrodynamic model of nanosecond laser ablation expressing energy, momentum, and mass conservation in the target material, as well as in the expanding plasma plume, along with collisional and radiative processes for laser-induced breakdown (plasma formation). Numerical simulations for copper in a helium background gas are presented and the efficiency of various ODE integrators is compared.

Publication Title

Neural, Parallel, and Scientific Computations

Publisher

Dynamic Publishers, Inc.

Share

COinS