Submitting Campus

Daytona Beach


Physical Sciences

Document Type


Publication/Presentation Date



High spectral resolution line profile observations indicate a reproducible semi-annual variation in the geocoronal hydrogen Balmer α effective temperature. These observations were made between 08 January 2000 and 21 November 2001 from Pine Bluff Observatory (WI) with a second generation double etalon Fabry-Perot annular summing spectrometer operating at a resolving power of 80,000. This data set spans sixty-four nights of observations (1404 spectra in total) over 20 dark-moon periods. A two cluster Gaussian model fitting procedure is used to determine Doppler line widths, accounting for fine structure contributions to the line, including those due to cascade; cascade contributions at Balmer α are found to be 5 ± 3%. An observed decrease in effective temperature with increasing shadow altitude is found to be a persistent feature for every night in which a wide range of shadow altitudes were sampled. A semiannual variation is observed in the column exospheric effective temperature with maxima near day numbers 100 and 300 and minima near day numbers 1 and 200. Temperatures ranged from ∼710 to 975 K. Average MSIS model exobase temperatures for similar conditions are approximately 1.5× higher than those derived from the Balmer α observations, a difference likely due to contributions to the observed Balmer αcolumn emission from higher, cooler regions of the exosphere.

Publication Title

Journal of Geophysical Research



American Geophysical Union

Grant or Award Name

NSF AGS-0940270

Additional Information

Dr. Mierkiewicz was not affiliated with Embry-Riddle Aeronautical University at the time this paper was published.