Submitting Campus

Daytona Beach


Physical Sciences

Document Type


Publication/Presentation Date



The 11-year solar cycle is a dominant source of natural variability in the upper atmosphere, and its effect on atomic hydrogen distributions and emissions must be understood to investigate possible signs of longer-term climatic trends in this region. We present midlatitude geocoronal hydrogen Balmer α observations from solar cycle 23 (1997–2006) and three solar minimum periods, 1985, 1997, and 2006. The 1997 through 2006 observations were taken with the Wisconsin H-αMapper Fabry-Perot (WHAM), a ground-based CCD-annular summing instrument that began observations at the Kitt Peak Observatory in Arizona in 1997. The 1985 observations were made with a similarly designed “pre-WHAM” Fabry-Perot Interferometer utilizing photomultiplier detection and located in Wisconsin. WHAM has consistently observed higher column emission intensities during solar maximum periods than during solar minimum conditions, with the ratio dependent upon the viewing geometry. The observations from three solar minimum periods agree to within 18% uncertainties over most of the shadow altitude range. An analysis of recent Fabry-Perot observations of upper atmospheric hydrogen during solar cycle 23 and during three solar minima (1985, 1997, 2006) established a reference data set of highly precise, consistently calibrated, thermospheric plus exospheric hydrogen column emission observations from northern midlatitudes that can be used to compare with future observations.

Publication Title

Journal of Geophysical Research



American Geophysical Union

Grant or Award Name

National Science Foundation ATM-0334611, AST-9619424

Additional Information

Dr. Mierkiewicz was not affiliated with Embry-Riddle Aeronautical University at the time this paper was published.