Is this project an undergraduate, graduate, or faculty project?

Undergraduate

individual

What campus are you from?

Daytona Beach

Authors' Class Standing

Senior

Lead Presenter's Name

Jose Nicolas Gachancipa

Faculty Mentor Name

Mihhail Berezovski

Abstract

Radioactive sources, such as uranium-235, are nuclides that emit ionizing radiation, and which can be used to build nuclear weapons. In public areas, the presence of a radioactive nuclide can present a risk to the population, and therefore, it is imperative that threats are identified by radiological search and response teams in a timely and effective manner. In urban environments, such as densely populated cities, radioactive sources may be more difficult to detect, since background radiation produced by surrounding objects and structures (e.g., buildings, cars) can hinder the effective detection of unnatural radioactive material. This study presents a computational model to detect radioactive sources in urban environments, which uses signal processing techniques to identify radiation signatures. Moreover, the model uses artificial neural networks to identify types of radiation sources, classifying them as innocuous or harmful, and discerning between weapons-grade material and radioactive isotopes used in medical/industrial settings.

Did this research project receive funding support from the Office of Undergraduate Research.

Yes, SURF

Share

COinS
 

Computational Models to Detect Radiation in Urban Environments

Radioactive sources, such as uranium-235, are nuclides that emit ionizing radiation, and which can be used to build nuclear weapons. In public areas, the presence of a radioactive nuclide can present a risk to the population, and therefore, it is imperative that threats are identified by radiological search and response teams in a timely and effective manner. In urban environments, such as densely populated cities, radioactive sources may be more difficult to detect, since background radiation produced by surrounding objects and structures (e.g., buildings, cars) can hinder the effective detection of unnatural radioactive material. This study presents a computational model to detect radioactive sources in urban environments, which uses signal processing techniques to identify radiation signatures. Moreover, the model uses artificial neural networks to identify types of radiation sources, classifying them as innocuous or harmful, and discerning between weapons-grade material and radioactive isotopes used in medical/industrial settings.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.