Is this project an undergraduate, graduate, or faculty project?

Faculty

group

What campus are you from?

Daytona Beach

Authors' Class Standing

Staff

Lead Presenter's Name

Patric Hruswicki

Faculty Mentor Name

Dr. Collins

Abstract

Distributed Electric Propulsion (DEP) has increased the design space for aerospace vehicles, especially those categorized as eVTOL (Electric Vertical Take-Off and Landing). This new class of vehicles not only looks different from the typical airplane or helicopter, but functions differently as well. A robust understanding of how the vehicle is controlled in both nominal and off-nominal modes will frame the approach to certification for private and commercial VTOL aircraft.

Embry-Riddle Aeronautical University’s Eagle Flight Research Center (EFRC) is researching how the various methods of DEP thrust control apply to larger eVTOL vehicle operation. Researchers will utilize a mixture of flight dynamic simulation and physical testing in collaboration with FAA experts in rotorcraft handling qualities certification. Outcomes of the research include the characterization of various DEP thrust and moment control methods and how this maps to certifiable vehicle-level attributes like handling qualities in nominal and degraded flight modes. A prototype will be built and tested showing the ability of a quad-rotor vehicle to continue flight after the loss of thrust by failure of one rotor.

It is anticipated that a better understanding of the DEP units will help inform the process of certification for the emerging market of urban air mobility vehicles. The data obtained from testing will be utilized to define the possible performance parameters, which will aid in developing appropriate means of compliance for advanced fly-by-wire N-rotor eVTOL vehicles.

Did this research project receive funding support from the Office of Undergraduate Research.

No

Share

COinS
 

Integrated Flight and Propulsion Control for Novel Rotorcraft

Distributed Electric Propulsion (DEP) has increased the design space for aerospace vehicles, especially those categorized as eVTOL (Electric Vertical Take-Off and Landing). This new class of vehicles not only looks different from the typical airplane or helicopter, but functions differently as well. A robust understanding of how the vehicle is controlled in both nominal and off-nominal modes will frame the approach to certification for private and commercial VTOL aircraft.

Embry-Riddle Aeronautical University’s Eagle Flight Research Center (EFRC) is researching how the various methods of DEP thrust control apply to larger eVTOL vehicle operation. Researchers will utilize a mixture of flight dynamic simulation and physical testing in collaboration with FAA experts in rotorcraft handling qualities certification. Outcomes of the research include the characterization of various DEP thrust and moment control methods and how this maps to certifiable vehicle-level attributes like handling qualities in nominal and degraded flight modes. A prototype will be built and tested showing the ability of a quad-rotor vehicle to continue flight after the loss of thrust by failure of one rotor.

It is anticipated that a better understanding of the DEP units will help inform the process of certification for the emerging market of urban air mobility vehicles. The data obtained from testing will be utilized to define the possible performance parameters, which will aid in developing appropriate means of compliance for advanced fly-by-wire N-rotor eVTOL vehicles.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.