Date of Award
Spring 4-1997
Document Type
Thesis - Open Access
Degree Name
Master of Science in Aerospace Engineering
Department
Aerospace Engineering
Committee Chair
Charles N. Eastlake
Committee Member
David Kim
Committee Member
Vicki Johnson
Abstract
A wingtip vortex turbine (WVT) is an induced drag reduction device that straightens the vortex flow (reducing induced drag and wake turbulence) and also produces a thrust force component. The WVT also has the advantage of extracting the rotational energy of the vortex to turn a generator, which could be used to power onboard applications during normal or emergency flight operations. A 1/4-scale model of a thrust-producing WVT has been designed and tested in a wind tunnel for optimal drag reduction and power generation for general aviation aircraft — specifically, a Piper Cherokee — in both a stationary and a rotating mode. In addition, 2, 3, 4, 5, and 6-bladed configurations were tested, over a pitch angle range of-35° to 0°. The 6-bladed configuration proved to be the most efficient at both reducing drag and generating maximum power. At cruise, this model was shown to increase the overall drag slightly by 40 to 60 counts. However, at lift coefficients greater than 0.8, the overall drag was reduced by 20 to 40 counts, depending on whether it was stationary or rotating. At cruise, it generated a power coefficient of 0.004, and a maximum of 0.0059 at a CL=0.85. These coefficients corresponded to full-scale power outputs of 4.5 hp and 6.7 hp, respectively.
Scholarly Commons Citation
Roberts, Andrew, "The Design and Experimental Optimization of a Wingtip Vortex Turbine for General Aviation Use" (1997). Master's Theses - Daytona Beach. 234.
https://commons.erau.edu/db-theses/234