Date of Award
Spring 5-1994
Document Type
Thesis - Open Access
Degree Name
Master of Science in Aerospace Engineering
Department
Graduate Studies
Committee Chair
Habib Eslami
Committee Member
Frank Radosta
Committee Member
Sathya Gangadharan
Abstract
The purpose of this thesis is to study the nonlinear analysis of antisymmetrically laminated composite beams including shear deformation subjected to harmonic excitation, using a 20-degree of freedom finite element beam. The beam has 10 degrees of freedom at each node: The axial displacements, the transverse deflection due to bending and transverse shear, the twisting angle, the in-plane shear rotation, and their derivatives along the axial direction. In this study, the effect of different parameters such as damping, shear deformation and different edge conditions on the steady-state frequency-responce will be investigated. The analysis was based on the use of finite element methodology for composite laminated beam structures. The harmonic force matrix represents the externally applied force in matrix form, instead of a vector form. Thus the analysis of nonlinear forced vibration can be performed efficiently to get a converged solution. The analysis was also based on the nonlinear stiffness matrix and both in-plane longitudinal, and transverse deflections are included in the formulation. The amplitude-frequency ratios for different boundary conditions, lamination angles, number of plies and thickness to length ratios are presented. The finite element results are compared with available approximate continuum solutions.
Scholarly Commons Citation
Kenareh, Mansour Nosrati, "Nonlinear Finite Element Analysis of Laminated Composite Beams Subjected to Harmonic Excitations Using a 20 DOF Beam Element" (1994). Master's Theses - Daytona Beach. 271.
https://commons.erau.edu/db-theses/271