Date of Award
Spring 2004
Document Type
Thesis - Open Access
Degree Name
Master of Aerospace Engineering
Department
Aerospace Engineering
Committee Chair
Eric v. K. Hill
Committee Member
Yi Zhao
Committee Member
David J. Sypeck
Abstract
The research presented herein demonstrates the feasibility of predicting ultimate strengths in composite beams subjected to 3-point bending using a neural network analysis of acoustic emission (AE) amplitude distribution data. Fifteen unidirectional fiberglass/epoxy beams were loaded to failure in a 3-point bend test fixture in an MTS load frame. Acoustic emission data were recorded from the onset of loading until failure. After acquisition, the acoustic emission data were filtered to include only data acquired up to 80 percent of the average ultimate load.
A backpropagation neural network was constructed to predict the ultimate failure load using these AE amplitude distribution data. Architecturally, the network consisted of a 61 processing element input layer for each of the event frequencies, a 13 processing element hidden layer for mapping, and a single processing element output layer for predicting the ultimate load. The network, trained on seven beams, was able to predict ultimate loads in the remaining eight beams with a worst case error of +4.34 percent, which was within the desired goal of ± 5 percent.
A second analysis was performed using a Kohonen self organizing map and multivariate statistical analysis. A Kohonen self organizing map was utilized to classify the AE data into 4 failure mechanisms. Then multivariate statistical analysis was performed using the number of hits associated with each failure mechanism to develop a prediction equation. The prediction equation was able to predict the ultimate failure load with a worst case error of-11.34 percent, which was well outside the desired goal of ± 5 percent. This was thought to be the result of noisy or sparse data, since statistical predictions are inherently sensitive to both, whereas backpropagation neural networks are not.
Scholarly Commons Citation
Dorfinan, Michele D., "Ultimate Strength Prediction in Fiberglass/Epoxy Beams Subjected to Three-Point Bending Using Acoustic Emission and Neural Networks" (2004). Master's Theses - Daytona Beach. 294.
https://commons.erau.edu/db-theses/294