Is this project an undergraduate, graduate, or faculty project?

Undergraduate

group

Daytona Beach

5-minute Oral Presentation

Authors' Class Standing

Patricio Garzon, Senior Andrew Ankeny, Junior David Palocelli, Sophomore

Lead Presenter's Name

Patricio Garzon

Faculty Mentor Name

Dr. Zheng Zhang

Abstract

A surfboard fin can be considered similar to a vertical stabilizer in a flow of water. In accordance to production standards in the aerospace industry, these wings are designed, modeled, and tested to specifications of use. Project S.H.R.E.D. implements common performance enhancing designs onto surfboards to allow for better L/D ratios and more favorable coefficients of drag and side force. The designs under consideration are fins with winglets, fins with vortex generators and fins with free hinges. Upon design, these fins are modeled using CATIA, analyzed in CFD using ANSYS Fluent, and then 3D printed for further testing and use. Printed fins are reinforced with fiberglass so as to be comparable to market competitors. Experimental data is collected by means of using a load testing machine to ensure the fin is structurally sound, and by running the fins in the Micaplex low speed wind tunnel which is able to match the Reynolds Number they will be subjected to in water use. Finally, the fins are given a qualitative test in the water by project members and local surfers of Daytona Beach.

Did this research project receive funding support (Spark, SURF, Research Abroad, Student Internal Grants, or Ignite Grants) from the Office of Undergraduate Research?

Yes, Ignite Grant

Share

COinS
 

Project S.H.R.E.D. (Surfing Hydrodynamic Research with Engineering Design)

A surfboard fin can be considered similar to a vertical stabilizer in a flow of water. In accordance to production standards in the aerospace industry, these wings are designed, modeled, and tested to specifications of use. Project S.H.R.E.D. implements common performance enhancing designs onto surfboards to allow for better L/D ratios and more favorable coefficients of drag and side force. The designs under consideration are fins with winglets, fins with vortex generators and fins with free hinges. Upon design, these fins are modeled using CATIA, analyzed in CFD using ANSYS Fluent, and then 3D printed for further testing and use. Printed fins are reinforced with fiberglass so as to be comparable to market competitors. Experimental data is collected by means of using a load testing machine to ensure the fin is structurally sound, and by running the fins in the Micaplex low speed wind tunnel which is able to match the Reynolds Number they will be subjected to in water use. Finally, the fins are given a qualitative test in the water by project members and local surfers of Daytona Beach.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.