Is this project an undergraduate, graduate, or faculty project?

Graduate

Project Type

group

Campus

Daytona Beach

Authors' Class Standing

Quentin Goss, Graduate Yara Alrashidi, Senior Mustafa Ilhan Akbas, Faculty

Lead Presenter's Name

Quentin Goss

Faculty Mentor Name

Mustafa Ilhan Akbas

Loading...

Media is loading
 

Abstract

Autonomous vehicle (AV) technology is positioned to have a significant impact on various industries. Hence, artificial intelligence powered AVs and modern vehicles with advanced driver-assistance systems have been operated in street networks for real-life testing. As these tests become more frequent, accidents have been inevitable and there have been reported crashes. The data from these accidents are invaluable for generating edge case test scenarios and understanding accident-time behavior. In this paper, we use the existing AV accident data and provide a methodology to identify the atomic blocks within each accident, which are modular and measurable scenario units. Our approach formulates each accident scenario using these atomic blocks and defines them in the Measurable Scenario Description Language (M-SDL). This approach produces modular scenario units with coverage analysis, provides a method to assist in the measurable analysis of accident-time AV behavior, and generates accident scenarios and their cousin scenarios.

Did this research project receive funding support (Spark, SURF, Research Abroad, Student Internal Grants, Collaborative, Climbing, or Ignite Grants) from the Office of Undergraduate Research?

No

Share

COinS
 

Generation of Modular and Measurable Validation Scenarios for Autonomous Vehicles Using Accident Data

Autonomous vehicle (AV) technology is positioned to have a significant impact on various industries. Hence, artificial intelligence powered AVs and modern vehicles with advanced driver-assistance systems have been operated in street networks for real-life testing. As these tests become more frequent, accidents have been inevitable and there have been reported crashes. The data from these accidents are invaluable for generating edge case test scenarios and understanding accident-time behavior. In this paper, we use the existing AV accident data and provide a methodology to identify the atomic blocks within each accident, which are modular and measurable scenario units. Our approach formulates each accident scenario using these atomic blocks and defines them in the Measurable Scenario Description Language (M-SDL). This approach produces modular scenario units with coverage analysis, provides a method to assist in the measurable analysis of accident-time AV behavior, and generates accident scenarios and their cousin scenarios.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.