Is this project an undergraduate, graduate, or faculty project?

Undergraduate

Project Type

group

Campus

Daytona Beach

Authors' Class Standing

Ryan Rednick, Sophomore Mariposa Magee, Sophomore

Lead Presenter's Name

Ryan Rednick

Lead Presenter's College

DB College of Arts and Sciences

Faculty Mentor Name

Alba A Chavez

Abstract

The formation of biofilms by marine and fungal organisms, including four marine Vibrio isolates and fungal isolates of Candida and Rhodotorula, represents complex ecosystems with significant implications for ecology and biomedicine. This study aimed to enhance the understanding of biofilm dynamics through accurate and comprehensive measurement techniques. Following inoculation and growth in liquid media, biofilms were developed in 96-well microplates and stained with crystal violet. The stained biofilms were then solubilized with isopropanol, and optical density measurements were used to quantify the absorbance relative to biofilm concentration. Notably, optical density readings indicated an increased amount of fungal biofilm formation when compared to marine bacterial biofilms, with statistical significance (p<0.05). This finding underscores the differential biofilm formation capacities among marine and fungal isolates, highlighting the importance of advanced quantitative techniques in revealing the structure, function, and ecological significance of biofilms. The study suggests potential applications in environmental and health-related fields and calls for further research into the molecular mechanisms underlying biofilm resilience and pathogenicity.

Keywords: Biofilms, Marine Vibrio, Candida, Rhodotorula, Crystal Violet, Optical Density, Comparative Analysis

Did this research project receive funding support (Spark, SURF, Research Abroad, Student Internal Grants, Collaborative, Climbing, or Ignite Grants) from the Office of Undergraduate Research?

No

Share

COinS
 

Quantitative Measurement of Marine and Fungal Biofilm Dynamics: Insights into Ecological and Biomedical Implications

The formation of biofilms by marine and fungal organisms, including four marine Vibrio isolates and fungal isolates of Candida and Rhodotorula, represents complex ecosystems with significant implications for ecology and biomedicine. This study aimed to enhance the understanding of biofilm dynamics through accurate and comprehensive measurement techniques. Following inoculation and growth in liquid media, biofilms were developed in 96-well microplates and stained with crystal violet. The stained biofilms were then solubilized with isopropanol, and optical density measurements were used to quantify the absorbance relative to biofilm concentration. Notably, optical density readings indicated an increased amount of fungal biofilm formation when compared to marine bacterial biofilms, with statistical significance (p<0.05). This finding underscores the differential biofilm formation capacities among marine and fungal isolates, highlighting the importance of advanced quantitative techniques in revealing the structure, function, and ecological significance of biofilms. The study suggests potential applications in environmental and health-related fields and calls for further research into the molecular mechanisms underlying biofilm resilience and pathogenicity.

Keywords: Biofilms, Marine Vibrio, Candida, Rhodotorula, Crystal Violet, Optical Density, Comparative Analysis

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.