Nanoscale Design of Interfacial Kinematics in Composite Manufacturing

Abstract

This NSF-funded research will elucidate the role of interfacial kinematics and energetics in the evolution of inter-ply interfaces in composite structures during manufacturing. The research team will develop a novel experimental method for in-situ characterization of surface and interface deformations during composite processing, utilizing a customized commercial composite autoclave with a digital image correlation system. The surface strain and displacement measurements will be combined with ex-situ X-ray tomography and thermal characterization to map the interfacial thermomechanical response as a function of design and processing parameters. Additionally, the interfacial behavior will be engineered through the rapid and controlled growth of ZnO nanowires on carbon fibers to create a nanoscale interfacial component that increases the fiber bending resistance and creates an interlocking effect at the interfaces to mitigate defects propagation. The experimental research will be complemented by molecular dynamics simulations of the sliding of amorphous polymer interfaces and mesoscale simulation of flow in porous media. This comprehensive approach of in-situ characterization, interface design, and modeling will lead to a fundamental understanding of the ply movement during composite manufacturing and development of methods to reduce the occurrence of processing-induced defects.

Scroll down for content

Share

COinS