Ion Acceleration at Magnetotail Plasma Jets

Presentation Type

Talk

Presenter Format

In Person Meeting Talk

Topic

Nightside Science

Start Date

11-5-2022 11:15 AM

Abstract

We investigate a series of Earthward bursty bulk flows (BBFs) observed by the Magnetospheric Multiscale (MMS) spacecraft in Earth’s magnetotail at (-24, 7, 4) RE in Geocentric Solar Magnetospheric (GSM) coordinates. At the leading edges of the BBFs, we observe complex magnetic field structures. In particular, we focus on one which presents a chain of small scale (~0.5 RE) dipolarizations, and another with a large scale (~3.5 RE) dipolarization. Although the two structures have different scales, both of these structures are associated with flux increases of supra-thermal ions with energies >100 keV. We investigate the ion acceleration mechanism and its dependence on the mass and charge state. We show that the ions with gyroradii smaller than the scale of the structure are accelerated by the ion bulk flow. We show that whereas in the small scale structure, ions with gyroradii comparable with the scale of the structure undergo resonance acceleration, and the acceleration in the larger scale structure is more likely due to a spatially limited electric field.

Share

COinS
 
May 11th, 11:15 AM

Ion Acceleration at Magnetotail Plasma Jets

We investigate a series of Earthward bursty bulk flows (BBFs) observed by the Magnetospheric Multiscale (MMS) spacecraft in Earth’s magnetotail at (-24, 7, 4) RE in Geocentric Solar Magnetospheric (GSM) coordinates. At the leading edges of the BBFs, we observe complex magnetic field structures. In particular, we focus on one which presents a chain of small scale (~0.5 RE) dipolarizations, and another with a large scale (~3.5 RE) dipolarization. Although the two structures have different scales, both of these structures are associated with flux increases of supra-thermal ions with energies >100 keV. We investigate the ion acceleration mechanism and its dependence on the mass and charge state. We show that the ions with gyroradii smaller than the scale of the structure are accelerated by the ion bulk flow. We show that whereas in the small scale structure, ions with gyroradii comparable with the scale of the structure undergo resonance acceleration, and the acceleration in the larger scale structure is more likely due to a spatially limited electric field.