Submitting Campus
Daytona Beach
Department
Physical Sciences
Document Type
Article
Publication/Presentation Date
11-27-2012
Abstract/Description
The Aerospace Corporation’s Nightglow Imager observed a large step function change in airglow in the form of a traveling front in the OH Meinel (OHM) and O2 atmospheric (O2A) airglow emissions over Alice Springs, Australia, on 2 February 2003. The front exhibited nearly a factor of 2 stepwise increase in the OHM brightness and a stepwise decrease in the O2A brightness. There was significant (~25 K) cooling behind the airglow fronts. The OHM airglow brightness behind the front was among the brightest for Alice Springs that we have measured in 7 years of observations. The event was associated with a strong phase-locked 2 day wave (PL/TDW). We have analyzed the wave trapping conditions for the upper mesosphere and lower thermosphere using a combination of data and empirical models and found that the airglow layers were located in a region of ducting. The PL/TDW-disturbed wind profile was effective in supporting a high degree of ducting, whereas without the PL/TDW the ducting was minimal or nonexistent. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. In OHM the leading disturbance was an isolated disturbance resembling a solitary wave. The characteristics of the wave train suggest an undular bore with some turbulent dissipation at the leading edge.
Publication Title
Journal of Geophysical Research: Atmospheres
DOI
https://doi.org/10.1029/2012JD017847
Publisher
American Geophysical Union
Scholarly Commons Citation
Walterscheid, R. L., J. H. Hecht, L. J. Gelinas, M. P. Hickey, and I. M. Reid (2012), An intense traveling airglow front in the upper mesosphere–lower thermosphere with characteristics of a bore observed over Alice Springs, Australia, during a strong 2 day wave episode, J. Geophys. Res., 117, D22105, doi: https://doi.org/10.1029/2012JD017847