Submitting Campus

Daytona Beach

Department

Physical Sciences

Document Type

Article

Publication/Presentation Date

7-25-2014

Abstract/Description

Plasma transport process as a fundamental problem in magnetospheric physics is often associated with strong nonadiabatic heating. At the magnetopause, observations show an increase of specific entropy (i.e., S = p/ργ) by 2 orders of magnitude from the magnetosheath into the magnetosphere. In the near‐Earth magnetotail, particle injection requires strongly entropy depleted plasma bubbles, and their evolution can be strongly modified in the presence of nonadiabatic heating. In this study, one of the critical plasma transport mechanisms, magnetic reconnection, is investigated as a nonadiabatic process in the framework of MHD. It is important to examine whether magnetic reconnection can provide sufficient nonadiabatic heating to explain the observed plasma properties and to identify plasma conditions that allow such strong nonadiabatic heating. We demonstrate that the entropy can indeed strongly increase associated with magnetic reconnection provided that the plasma beta (i.e., the ratio of thermal to magnetic energy density) is low in the inflow region of reconnection.

Publication Title

Journal of Geophysical Research: Space Physics

DOI

https://doi.org/10.1002/2014JA019856

Publisher

American Geophysical Union

Additional Information

Dr. Ma was not affiliated with Embry-Riddle Aeronautical University at the time this paper was published.

Share

COinS