Submitting Campus

Daytona Beach

Department

Physical Sciences

Document Type

Article

Publication/Presentation Date

1-3-2017

Abstract/Description

A new anisotropic fluid model is developed to describe ionospheric upflow responses to magnetospheric forcing by electric fields and broadband ELF waves at altitudes of 90–2500 km. This model is based on a bi‐Maxwellian ion distribution and solves time‐dependent, nonlinear equations of conservation of mass, momentum, parallel energy, and perpendicular energy for six ion species important to E, F, and topside ionospheric regions. It includes chemical and collisional interactions with the neutral atmosphere, photoionization, and electron impact ionization. This model is used to examine differences between isotropic and anisotropic descriptions of ionospheric upflow driven by DC electric fields, possible effects of low‐altitude (km) wave heating, and impacts of neutral winds on ion upflow. Results indicate that isotropic models may overestimate field‐aligned ion velocity responses by as much as ∼48%. Simulations also show significant ionospheric responses at low altitudes to wave heating for very large power spectral densities, but ion temperature anisotropies below the F region peak are dominated by frictional heating from DC electric fields. Neutral winds are shown to play an important role regulating ion upflow. Thermospheric winds can enhance or suppress upward fluxes driven by DC and BBELF fields by 10–20% for the cases examined. The time history of the neutral winds also affects the amount of ionization transported to higher altitudes by DC electric fields.

Publication Title

Journal of Geophysical Research: Space Physics

DOI

https://doi.org/10.1002/2016JA023329

Publisher

American Geophysical Union

Grant or Award Name

NSF CAREER grant AGS-1255181, NASA grant NNX15AJ08G, NSF CAREER grant AGS-1255181, NSF grant AGS-1339537

Additional Information

Burleigh, M., and M. Zettergren(2017), Anisotropic fluid modeling of ionospheric upflow: Effects of low-altitude anisotrop yand thermospheric winds, J. Geophys. Res. Space Physics,122,808–827.

Required Publisher’s Statement

An edited version of this paper was published by AGU. Copyright (2016) American Geophysical Union

Share

COinS