Submitting Campus
Daytona Beach
Department
Physical Sciences
Document Type
Conference Proceeding
Publication/Presentation Date
4-2007
Abstract/Description
We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the “Orbital Energy”, given a smooth Center of Mass trajectory. Given a closed form Center of Mass Trajectory, the equation for the Orbital Energy is a closed form expression except for an integral term, which we show to be the first moment of area under the Center of Mass path. Hence, given a Center of Mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for many classes of trajectories, such as those in which height is a polynomial function of Center of Mass horizontal displacement, the Orbital Energy can be solved in closed form.
Given expressions for the Orbital Energy, we can compute where the foot should be placed or how the Center of Mass trajectory should be modified in order to achieve a desired velocity on the next step.
We demonstrate our results using a planar biped simulation with light legs and point mass body. We parameterize the Center of Mass trajectory with a fifth order polynomial function. We demonstrate how the parameters of this polynomial and step length can be changed in order to achieve a desired next step velocity.
DOI
https://doi.org/10.1109/ROBOT.2007.364196
Sponsorship/Conference/Institution
2007 IEEE International Conference on Robotics and Automation
Location
Roma, Italy
Scholarly Commons Citation
Pratt, J. E., & Drakunov, S. V. (2007). Derivation and Application of a Conserved Orbital Energy for the Inverted Pendulum Bipedal Walking Model. , (). https://doi.org/10.1109/ROBOT.2007.364196
Included in
Acoustics, Dynamics, and Controls Commons, Controls and Control Theory Commons, Other Engineering Commons
Additional Information
This paper appears in the proceedings volume on pages 4653-4660.
Dr. Drakunov was not affiliated with Embry-Riddle Aeronautical University at the time this paper was published.