Submitting Campus
Daytona Beach
Department
Electrical Engineering and Computer Science
Document Type
Article
Publication/Presentation Date
12-2019
Abstract/Description
Fuzzing is one of the most effective vulnerability detection techniques, widely used in practice. However, the performance of fuzzers may be limited by their inability to pass complicated checks, inappropriate mutation frequency, arbitrary mutation strategy, or the variability of the environment. In this paper, we present DeepFuzzer, an enhanced greybox fuzzer with qualified seed generation, balanced seed selection, and hybrid seed mutation. First, we use symbolic execution in a lightweight approach to generate qualified initial seeds which then guide the fuzzer through complex checks. Second, we apply a statistical seed selection algorithm to balance the mutation frequency between different seeds. Further, we develop a hybrid mutation strategy. The random and restricted mutation strategies are combined to maintain a dynamic balance between global exploration and deep search. We evaluate DeepFuzzer on the widely used benchmark Google fuzzer-test-suite which consists of real-world programs. Compared with AFL, AFLFast, FairFuzz, QSYM, and MOPT in the 24-hour experiment, DeepFuzzer discovers 30%, 240%, 102%, 147%, and 257% more unique crashes, executes 40%, 36%, 36%, 98%, and 15% more paths, and covers 37%, 34%, 34%, 101%, and 11% more branches, respectively. Furthermore, we present the practice of fuzzing a message middleware from Huawei with DeepFuzzer, and 9 new vulnerabilities are reported.
Publication Title
IEEE Transactions on Dependable and Secure Computing
DOI
https://doi.org/10.1109/TDSC.2019.2961339
Publisher
Institute of Electrical and Electronics Engineers
Scholarly Commons Citation
Liang, J., Jiang, Y., Wang, M., Song, H., & Choo, K. R. (2019). DeepFuzzer: Accelerated Deep Greybox Fuzzing. IEEE Transactions on Dependable and Secure Computing, (). https://doi.org/10.1109/TDSC.2019.2961339