Submitting Campus
Daytona Beach
Department
Mechanical Engineering
Document Type
Article
Publication/Presentation Date
6-29-2019
Abstract/Description
Performance data on earth dams and levees continue to indicate that piping is one of the major causes of failure. Current criteria for prevention of piping in earth dams and levees have remained largely empirical. This paper aims at developing a mechanistic understanding of the conditions necessary to prevent piping and to enhance the likelihood of self-healing of cracks in levees subjected to hydrodynamic loading from astronomical and meteorological (including hurricane storm surge-induced) forces. Systematic experimental investigations are performed to evaluate erosion in finite-length cracks as a result of transient hydrodynamic loading. Here, a novel application of the localized collocation meshless method (LCMM) to the hydrodynamic and poroelastic problem is introduced to arrive at high-fidelity field solutions. Results from the LCMM numerical simulations are designed to be used as an input, along with the soil and erosion parameters obtained experimentally, to characterize progressive piping.
Publication Title
Fluids
DOI
https://doi.org/10.3390/fluids4030120
Publisher
Multidisciplinary Digital Publishing Institute
Scholarly Commons Citation
Khoury, A., Divo, E., Kassab, A. J., Kakuturu, S., & Reddi, L. (2019). Meshless Modeling of Flow Dispersion and Progressive Piping in Poroelastic Levees. Fluids, 4(120). https://doi.org/10.3390/fluids4030120
Included in
Fluid Dynamics Commons, Hydraulic Engineering Commons, Numerical Analysis and Computation Commons