Submitting Campus
Daytona Beach
Department
Mechanical Engineering
Document Type
Article
Publication/Presentation Date
5-22-2018
Abstract/Description
The hybrid Norwood operation is performed to treat hypoplastic left heart syndrome. Distal arch obstruction may compromise flow to the brain. In a variant of this procedure, a synthetic graft (reverse Blalock–Taussig shunt) is placed between the pulmonary trunk and innominate artery to improve upper torso blood flow. Thrombi originating in the graft may embolize to the brain. In this study, we used computational fluid dynamics and particle tracking to investigate the patterns of particle embolization as a function of the anatomic position of the reverse Blalock–Taussig shunt. The degree of distal arch obstruction and position of particle origin influence embolization probabilities to the cerebral arteries. Cerebral embolization probabilities can be reduced by as much as 20% by optimizing graft position, for a given arch geometry, degree of distal arch obstruction, and particle origin. There is a tradeoff, however, between cerebral pulmonary and coronary embolization probabilities.
Publication Title
Canadian Journal of Physiology and Pharmacology
DOI
https://doi.org/10.1139/cjpp-2018-0002
Publisher
Canadian Science Publishing
Scholarly Commons Citation
Prather, R., Seligson, J., Ni, M., Divo, E., Kassab, A. J., & DeCampli, W. (2018). Patient-Specific Multiscale Computational Fluid Dynamics Assessment of Embolization Rates in the Hybrid Norwood: Effects of Size and Placement of the Reverse Blalock–Taussig Shunt. Canadian Journal of Physiology and Pharmacology, 96(). https://doi.org/10.1139/cjpp-2018-0002
Included in
Cardiovascular System Commons, Fluid Dynamics Commons, Numerical Analysis and Computation Commons