Submitting Campus

Daytona Beach

Department

Human Factors and Behavioral Neurobiology

Document Type

Article

Publication/Presentation Date

12-18-2020

Abstract/Description

Spaceflight missions can cause immune system dysfunction in astronauts with little understanding of immune outcomes in deep space. This study assessed immune responses in mice following ground-based, simulated deep spaceflight conditions, compared with data from astronauts on International Space Station missions. For ground studies, we simulated microgravity using the hindlimb unloaded mouse model alone or in combination with acute simulated galactic cosmic rays or solar particle events irradiation. Immune profiling results revealed unique immune diversity following each experimental condition, suggesting each stressor results in distinct circulating immune responses, with clear consequences for deep spaceflight. Circulating plasma microRNA sequence analysis revealed involvement in immune system dysregulation. Furthermore, a large astronaut cohort showed elevated inflammation during low-Earth orbit missions, thereby supporting our simulated ground experiments in mice. Herein, circulating immune biomarkers are defined by distinct deep space irradiation types coupled to simulated microgravity and could be targets for future space health initiatives.

Publication Title

iScience

DOI

https://doi.org/10.1016/j.isci.2020.101747

Publisher

Cell Press

Grant or Award Name

NASA Cooperative Agreement NNX16AO69A (T-0404)

Additional Information

Dr. Paul was not affiliated with Embry-Riddle Aeronautical University at the time this paper was published.

Share

COinS