Submitting Campus

Daytona Beach

Department

Mathematics

Document Type

Article

Publication/Presentation Date

7-24-2019

Abstract/Description

We investigate a new two-dimensional compressible Navier-Stokes hydrodynamic model design to explain and study large scale ice swirls formation at the surface of the ocean. The linearized model generates a basis of Bessel solutions from where various types of spiral patterns can be generated and their evolution and stability in time analyzed. By restricting the nonlinear system of equations to its quadratic terms we obtain swirl solutions emphasizing logarithmic spiral geometry. The resulting solutions are analyzed and validated using three mathematical approaches: one predicting the formation of patterns as Townes solitary modes, another approach mapping the nonlinear system into a sine-Gordon equation, and a third approach uses a series expansion. Pure radial, azimuthal and spiral modes are obtained from the fully nonlinear equations. Combinations of multiple-spiral solutions are also obtained, matching the experimental observations. The nonlinear stability of the spiral patterns is analyzed by Arnold’s convexity method, and the Hamiltonian of the solutions is plotted versus some order parameters showing the existence of geometric phase transitions.

Publication Title

Nonlinear Sciences

Publisher

Cornell University

Share

COinS