Submitting Campus
Prescott
Department
Aeronautics, Undergraduate Studies
Document Type
Report
Publication/Presentation Date
Spring 2015
Abstract/Description
The Core-Collapse supernovae (CCSNe) mark the dynamic and explosive end of the lives of massive stars. The mysterious mechanism, primarily focused with the shock revival phase, behind CCSNe explosions could be explained by detecting the corresponding gravitational wave (GW) emissions by the laser interferometer gravitational wave observatory, LIGO. GWs are extremely hard to detect because they are weak signals in a floor of instrument noise. Optical observations of CCSNe are already used in coincidence with LIGO data, as a hint of the times where to search for the emission of GWs. More of these hints would be very helpful. For the first time in history a Harvard group has observed X-ray transients in coincidence with optical CCSNe. This discovery has proven that even if a supernova had its light absorbed with dust, X-ray transients that are more penetrating, and thus could be used as a hint on where to search for GWs. The SWIFT satellite can monitor galaxies with an X-ray probe. The main goal of this project will be to quantify the benefits for LIGO by using the SWIFT satellite to monitor galaxies within 20 Mega parsecs from Earth.
Grant or Award Name
Ignite
Scholarly Commons Citation
Gill, K., Zanolin, M., & Szczepańczyk, M. (2015). Core-Collapse Supernovae Overview with Swift Collaboration. , (). Retrieved from https://commons.erau.edu/publication/3
Additional Information
Faculty Mentor: Dr. Michele Zanolin