Submitting Campus

Daytona Beach

Department

Physical Sciences

Document Type

Article

Publication/Presentation Date

9-2008

Abstract/Description

Swept Impedance Probe measurements in a sporadic E layer observed during the Sudden Atomic Layer (SAL) sounding rocket mission are analyzed to obtain absolute electron densities and electron neutral collision frequencies accurately. Three sets of upleg and downleg impedance data are selected for the analysis. Initial estimates of the plasma parameters are obtained through a least mean square fit of the measured impedance data against the analytical impedance formula ZB(f ) of Balmain (1969). These initial parameters are used as a starting point to drive a finite difference computational model of an antenna immersed in a plasma called PF-FDTD. The parameters are then tuned until a close fit is obtained between the measured impedance data and the numerical impedance data calculated by the PF-FDTD simulation. The electron densities obtained from the simulation were close to those obtained from the IRI 2001 model. The electron neutral collision frequencies obtained from the more accurate PF-FDTD simulation were up to 20% lower than the values predicted by Balmain’s formula. The obtained collision frequencies are also lower than the quiet time values predicted by Schunk and Nagy (2000) when used in conjunction with neutral densities and electron temperature from the Mass Spectrometer Incoherent Scatter Radar Extended-90 model.

Publication Title

Journal of Geophysical Research

DOI

https://doi.org/10.1029/2007JA013004

Publisher

American Geophysical Union

Share

COinS