Submitting Campus

Daytona Beach

Department

Physical Sciences

Document Type

Article

Publication/Presentation Date

11-1-2012

Abstract/Description

Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, τ, of the Eu3+ emission that follows the cationic mass; τCa < τSr < τBa with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise “standard” materials, e.g., vapor-derived silica, in next generation optical fibers.

Publication Title

Optical Materials Express

DOI

https://doi.org/10.1364/OME.2.001520

Publisher

Optical Society of America

Required Publisher’s Statement

© 2012 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.

Share

COinS