Submitting Campus

Daytona Beach

Department

Physical Sciences

Document Type

Article

Publication/Presentation Date

4-2015

Abstract/Description

The magnetosheath contains the shocked solar wind and behaves as a natural filter to the solar wind plasma before it reaches the magnetosphere. The redistribution of kinetic energy at the bow shock results in significant thermalization of the solar wind plasma, resulting in a magnetosheath temperature profile which is highly nonhomogeneous and nonisotropic and differs between the dawn and dusk flanks. The present study attempts to study the spatial distribution of magnetosheath ion temperature as a function of upstream solar wind conditions. We pay particular attention to the dawn/dusk asymmetry in which we attempt to quantify using experimental data collected over a 7 year period. We also compare these data to simulated data from both the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) MHD code and a kinetic hybrid model. We present evidence that the dawn flank is consistently hotter than the dusk flank for a variety of upstream conditions. Our statistical data also suggest a dependency on solar wind speed such that the level of asymmetry increases with faster speeds. We conclude that the dawn-favored asymmetry of the magnetosheath seed population is insufficient to explain the dawn asymmetry (30–40%) of cold component ions in the cold, dense plasma sheet, and therefore, other mechanisms are likely required.

Publication Title

Journal of Geophysical Research: Space Physics

DOI

https://doi.org/10.1002/2014JA029734

Publisher

American Geophysical Union

Grant or Award Name

NSF grant 0847120 and Academy of Finland grant 267073/2013

Share

COinS