Submitting Campus
Daytona Beach
Department
Physical Sciences
Document Type
Article
Publication/Presentation Date
11-2005
Abstract/Description
The recent launch of the equatorial spacecraft of the Double Star mission, TC-1, has provided an unprecedented opportunity to monitor the southern hemisphere dayside magnetopause boundary layer in conjunction with northern hemisphere observations by the quartet of Cluster spacecraft. We present first results of one such situation where, on 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawnside magnetosphere. The observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1, which appear to lie north and south of the reconnection line, respectively. In fact, the observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, with Cluster observing northward moving FTEs with +/− polarity, whereas TC-1 sees −/+ polarity FTEs. This assertion is further supported by the application of a model designed to track flux tube motion for the prevailing interplanetary conditions. The results from this model show, in addition, that the low-latitude FTE dynamics are sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model suggests that TC-1 should miss the resulting FTEs more often than Cluster and this is borne out by the observations.
Publication Title
Annales Geophysicae
DOI
https://doi.org/10.5194/angeo-23-2867-2005
Publisher
European Geosciences Union
Grant or Award Name
CNSF Grant 40390150, Chinese Fundamental Research Project G200000784
Scholarly Commons Citation
Dunlop, M. W., Taylor, M. G., Davies, J. A., Owen, C. J., Pitout, F., Fazakerley, A. N., Nykyri, K., & et al. (2005). Coordinated Cluster/Double Star Observations of Dayside Reconnection Signatures. Annales Geophysicae, 23(). https://doi.org/10.5194/angeo-23-2867-2005
Additional Information
Dr. Nykyri was not affiliated with Embry-Riddle Aeronautical University at the time this paper was published.