Submitting Campus
Daytona Beach
Department
Mathematics
Document Type
Article
Publication/Presentation Date
5-2006
Abstract/Description
In this paper we use a traveling wave reduction or a so–called spatial approximation to comprehensively investigate the periodic solutions of the complex cubic–quintic Ginzburg–Landau equation. The primary tools used here are Hopf bifurcation theory and perturbation theory. Explicit results are obtained for the post–bifurcation periodic orbits and their stability. Generalized and degenerate Hopf bifurcations are also briefly considered to track the emergence of global structure such as homoclinic orbits.
Publication Title
Chaos, Solitons & Fractals
DOI
https://doi.org/10.1016/j.chaos.2005.08.080
Publisher
Elsevier
Scholarly Commons Citation
Mancas, S., & Choudhury, S. R. (2006). Traveling Wavetrains in the Complex Cubic-Quintic Ginzburg-Laundau Equation. Chaos, Solitons & Fractals, 28(3). https://doi.org/10.1016/j.chaos.2005.08.080